neon/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
//! The [Neon][neon] crate provides bindings for writing [Node.js addons][addons]
//! (i.e., dynamically-loaded binary modules) with a safe and fast Rust API.
//!
//! ## Getting Started
//!
//! You can conveniently bootstrap a new Neon project with the Neon project
//! generator. You don't need to install anything special on your machine as
//! long as you have a [supported version of Node and Rust][supported] on
//! your system.
//!
//! To start a new project, open a terminal in the directory where you would
//! like to place the project, and run at the command prompt:
//!
//! ```text
//! % npm init neon my-project
//! ... answer the user prompts ...
//! ✨ Created Neon project `my-project`. Happy 🦀 hacking! ✨
//! ```
//!
//! where `my-project` can be any name you like for the project. This will
//! run the Neon project generator, prompting you with a few questions and
//! placing a simple but working Neon project in a subdirectory called
//! `my-project` (or whatever name you chose).
//!
//! You can then install and build the project by changing into the project
//! directory and running the standard Node installation command:
//!
//! ```text
//! % cd my-project
//! % npm install
//! % node
//! > require(".").hello()
//! 'hello node'
//! ```
//!
//! You can look in the project's generated `README.md` for more details on
//! the project structure.
//!
//! ## Example
//!
//! The generated `src/lib.rs` contains a function annotated with the
//! [`#[neon::main]`](main) attribute, marking it as the module's main entry
//! point to be executed when the module is loaded. This function can have
//! any name but is conventionally called `main`:
//!
//! ```no_run
//! # mod example {
//! # use neon::prelude::*;
//! # fn hello(mut cx: FunctionContext) -> JsResult<JsString> {
//! # Ok(cx.string("hello node"))
//! # }
//! #[neon::main]
//! fn main(mut cx: ModuleContext) -> NeonResult<()> {
//! cx.export_function("hello", hello)?;
//! Ok(())
//! }
//! # }
//! ```
//!
//! The example code generated by `npm init neon` exports a single
//! function via [`ModuleContext::export_function`](context::ModuleContext::export_function).
//! The `hello` function is defined just above `main` in `src/lib.rs`:
//!
//! ```
//! # use neon::prelude::*;
//! #
//! fn hello(mut cx: FunctionContext) -> JsResult<JsString> {
//! Ok(cx.string("hello node"))
//! }
//! ```
//!
//! The `hello` function takes a [`FunctionContext`](context::FunctionContext) and
//! returns a JavaScript string. Because all Neon functions can potentially throw a
//! JavaScript exception, the return type is wrapped in a [`JsResult`](result::JsResult).
//!
//! [neon]: https://www.neon-bindings.com/
//! [addons]: https://nodejs.org/api/addons.html
//! [supported]: https://github.com/neon-bindings/neon#platform-support
#![cfg_attr(docsrs, feature(doc_cfg))]
pub mod context;
pub mod event;
pub mod handle;
mod macros;
pub mod meta;
pub mod object;
pub mod prelude;
pub mod reflect;
pub mod result;
#[cfg(not(feature = "sys"))]
mod sys;
#[cfg_attr(docsrs, doc(cfg(feature = "napi-6")))]
#[cfg(feature = "napi-6")]
pub mod thread;
// To use the #[aquamarine] attribute on the top-level neon::types module docs, we have to
// use this hack so we can keep the module docs in a separate file.
// See: https://github.com/mersinvald/aquamarine/issues/5#issuecomment-1168816499
mod types_docs;
mod types_impl;
#[cfg(feature = "sys")]
#[cfg_attr(docsrs, doc(cfg(feature = "sys")))]
pub mod sys;
#[cfg(all(feature = "napi-6", feature = "futures"))]
#[cfg_attr(docsrs, doc(cfg(all(feature = "napi-6", feature = "futures"))))]
pub use executor::set_global_executor;
pub use types_docs::exports as types;
#[doc(hidden)]
pub mod macro_internal;
pub use crate::macros::*;
use crate::{context::ModuleContext, handle::Handle, result::NeonResult, types::JsValue};
#[cfg(feature = "napi-6")]
mod lifecycle;
#[cfg(all(feature = "napi-6", feature = "futures"))]
mod executor;
#[cfg(feature = "napi-8")]
static MODULE_TAG: once_cell::sync::Lazy<crate::sys::TypeTag> = once_cell::sync::Lazy::new(|| {
let mut lower = [0; std::mem::size_of::<u64>()];
// Generating a random module tag at runtime allows Neon builds to be reproducible. A few
// alternatives considered:
// * Generating a random value at build time; this reduces runtime dependencies but, breaks
// reproducible builds
// * A static random value; this solves the previous issues, but does not protect against ABI
// differences across Neon and Rust versions
// * Calculating a variable from the environment (e.g. Rust version); this theoretically works
// but, is complicated and error prone. This could be a future optimization.
getrandom::getrandom(&mut lower).expect("Failed to generate a Neon module type tag");
// We only use 64-bits of the available 128-bits. The rest is reserved for future versioning and
// expansion of implementation.
let lower = u64::from_ne_bytes(lower);
// Note: `upper` must be non-zero or `napi_check_object_type_tag` will always return false
// https://github.com/nodejs/node/blob/5fad0b93667ffc6e4def52996b9529ac99b26319/src/js_native_api_v8.cc#L2455
crate::sys::TypeTag { lower, upper: 1 }
});
/// Values exported with [`neon::export`](export)
pub struct Exports(());
impl Exports {
/// Export all values exported with [`neon::export`](export)
///
/// ```
/// # fn main() {
/// # use neon::prelude::*;
/// #[neon::main]
/// fn main(mut cx: ModuleContext) -> NeonResult<()> {
/// neon::registered().export(&mut cx)?;
/// Ok(())
/// }
/// # }
/// ```
///
/// For more control, iterate over exports.
///
/// ```
/// # fn main() {
/// # use neon::prelude::*;
/// #[neon::main]
/// fn main(mut cx: ModuleContext) -> NeonResult<()> {
/// for create in neon::registered() {
/// let (name, value) = create(&mut cx)?;
///
/// cx.export_value(name, value)?;
/// }
///
/// Ok(())
/// }
/// # }
/// ```
pub fn export(self, cx: &mut ModuleContext) -> NeonResult<()> {
for create in self {
let (name, value) = create(cx)?;
cx.export_value(name, value)?;
}
Ok(())
}
}
impl IntoIterator for Exports {
type Item = <<Self as IntoIterator>::IntoIter as IntoIterator>::Item;
type IntoIter = std::slice::Iter<
'static,
for<'cx> fn(&mut ModuleContext<'cx>) -> NeonResult<(&'static str, Handle<'cx, JsValue>)>,
>;
fn into_iter(self) -> Self::IntoIter {
crate::macro_internal::EXPORTS.into_iter()
}
}
/// Access values exported with [`neon::export`](export)
pub fn registered() -> Exports {
Exports(())
}
#[test]
fn feature_matrix() {
use std::{env, process::Command};
const NODE_API_VERSIONS: &[&str] = &[
"napi-1", "napi-2", "napi-3", "napi-4", "napi-5", "napi-6", "napi-7", "napi-8",
];
const FEATURES: &[&str] = &["external-buffers", "futures", "serde", "tokio", "tokio-rt"];
let cargo = env::var_os("CARGO").unwrap_or_else(|| "cargo".into());
for features in itertools::Itertools::powerset(FEATURES.iter()) {
for version in NODE_API_VERSIONS.iter().map(|f| f.to_string()) {
let features = features.iter().fold(version, |f, s| f + "," + s);
let status = Command::new(&cargo)
.args(["check", "-p", "neon", "--features"])
.arg(features)
.spawn()
.unwrap()
.wait()
.unwrap();
assert!(status.success());
}
}
}